

Less is More Reducing Task and Model Complexity for 3D Point Cloud Semantic Segmentation

Main Contributions

Figure 1. mIoU (%) against parameters and Mult–Adds @5% sampling protocol.

- A novel methodology for semisupervised 3D LiDAR semantic segmentation that uses significantly Less parameters and offers (More) superior accuracy.
- **SDSC** A novel Sparse Depthwise Separable Convolution (SDSC) module, to reduce trainable network parameters, and to both reduce the likelihood of over-fitting and facilitate a deeper network architecture.
- **ST-RFD** A novel Spatio-Temporal Redundant Frame Down-sampling (ST-RFD) strategy, to extract a maximally diverse data subset for training by removing temporal redundancy and hence future training requirements.
- Reflec-TTA UPL A novel soft pseudolabeling method informed by LiDAR reflectivity as a proxy to in-scene object material properties, facilitating effective use of limited data annotation.

Method	# Parameters	# Mult-Adds	SeK [7]	ScK [46]
Cylider3D [63] Unal <i>et al.</i> [46] 2DPASS [58] MinkowskiNet [13] SPVNAS [44] LiM3D+SDSC (ours)	56.3 49.6 26.5 21.7 12.5 <u>21.5</u>	476.9M 420.2M <u>217.4M</u> 114.0G 73.8G 182.0M	45.4 49.9 51.7 42.4 45.1 <u>57.6</u>	39.2 46.9 45.1 35.8 38.9 <u>54.7</u>
L1M3D (ours)	49.6	420.2M	59.5	58.1

Table 3. The computation cost and mIoU (%) 5%-labeled training results on under SemanticKITTI (SeK) and ScribbleKITTI (ScK).

Li Li, Hubert P. H. Shum, Toby P. Breckon, Durham University, UK

Methodology

LIM Figure 2. Our proposed architecture for unreliable pseudo-labels LiDAR semantic segmentation involves three stages: training, pseudo-labeling, and distillation with unreliable learning.

e	equen	ce	<u>divi</u> in	ded to	S	ubsets		ר	→		san	npl <mark>ed</mark> s	equ <mark>er</mark>	1 <mark>ce</mark>
	frame	frame	frame	frame	frame	frame	frame <		- √	X	X	\checkmark	×	>
No No No		ψ	t	,	t	+1)	mean	(ψ) →	sampling	g rate -		→ sele	əct k _i fı	ram

ST-RFD *Figure 6*. Overview of Spatio–Temporal Redundant Frame Downsampling (ST–RFD) approach.

ST-RFD *Figure 5*. Illustration of LiDAR frame temporal correlation as [# frame ID] redundancy with 5% sampling on SemanticKITTI [7] using uniform sampling (selected frames in \bigcirc) and ST–RFD strategy (\bigcirc).

Reflec-TTA bins.

UPL unreliable prediction X.

Figure 3. Illustration on Unreliable Pseudo-Labels (UPL). Left: entropy predicted from an unlabeled point cloud – greener: lower entropy. Right: Category-wise probability of an

Figure 8. Comparing the 10% sampling split with ground-truth (left), our approach (middle) and Unal et al. [46] (right).

Dong	Same	Mathad	SemanticKITTI [7]							ScribbleKITTI [46]							
Repr.	Samp.	Ivietnoa	1%	5%	10%	20%	40%	50%	100%	1%	5%	10%	20%	40%	50%	100%	
Range	U	LaserMix [32]	(2022)	43.4	—	58.8	59.4	—	61.4	-	38.3	—	54.4	55.6	—	58.7	—
	U	Cylinder3D [63]	(CVPR'21)	_	45.4	56.1	57.8	58.7	_	67.8	_	39.2	48.0	52.1	53.8	_	56.3
	U	LaserMix [32]	(2022)	50.6	_	60.0	<u>61.9</u>	_	62.3	_	44.2	_	53.7	55.1	_	56.8	_
Voxel	Р	Jiang <i>et al</i> . [29]	(ICCV'21)	_	41.8	49.9	58.8	59.9	_	65.8	_	_	_	_	_	_	—
	U	Unal <i>et al</i> . [46]	(CVPR'22)	_	49.9*	58.7*	59 .1*	60.9	_	<u>68.2</u> *	_	46.9*	54.2*	56.5 [*]	58.6^{*}	_	<u>61.3</u>
	S	LiM3D+SDSC	(ours)	<u>57.2</u>	<u>57.6</u>	<u>61.0</u>	61.7	<u>62.1</u>	<u>62.7</u>	67.5	<u>55.8</u>	<u>56.1</u>	<u>56.9</u>	<u>57.2</u>	<u>58.9</u>	<u>59.3</u>	60.7
	S	LiM3D	(ours)	58.4	59.5	62.2	63.1	63.3	63.6	69.5	57.0	58.1	61.0	61.2	62.0	62.1	62.4

Table 1. Comparative mIoU for Range- and Voxel-based methods using Uniform sampling (U), sequential partition (P) and ST-RFD sampling (S): **bold**/underlined = best/2nd best.

Sampling	5%	Semantic 10%	KITTI [7 20%	[] 40%	5%	ScribbleK 10%	CITTI [46 20%	[] 40%	Ratio	Unre mIoU	liable SS/FF	Reli mIoU	able SS/FF	Ran mIoU	dom SS/FF
Random	58.5	61.6	62.6	62.7	57.1	60.3	60.5	60.9	5%	59.5	85.6	57.2	82.3	56.4	81.2
Uniform	58.7	61.3	62.4	62.8	56.9	60.6	60.3	61.0	10%	62.2	89.5	60.8	87.5	59.7	85.9
ST-RFD-R	<u>59.1</u>	62.4	<u>62.9</u>	63.4	<u>58.0</u>	<u>60.7</u>	61.2	<u>61.8</u>	20%	63.1	90.8	61.4	88.3	60.5	87.1
ST-RFD	59.5	<u>62.2</u>	63.1	<u>63.3</u>	58.1	61.0	61.2	62.0	40%	63.3	91.1	62.8	90.4	61.3	88.2

Table 4. Effects of ST–RFD sampling (mIoU as %).

Figure A4. Magnification of regional details.

Evaluation & Results

~		рт	СТ	SD	Training mIoU (%)				Valic	lation	mIoU	(%)	#Params	
		Π	Π	51	3D	5%	10%	20%	40%	5%	10%	20%	40%	(M)
1						82.8	87.5	87.8	88.2	54.8	58.1	59.3	60.8	49.6
	\checkmark					—	—	—	_	55.9	58.8	59.9	61.2	49.6
	\checkmark	\checkmark				83.6	88.3	88.7	89.1	56.8	59.6	60.5	61.4	49.6
4 1	\checkmark		\checkmark			_	_	_	_	57.5	59.8	61.2	62.6	49.6
	\checkmark	\checkmark	\checkmark			_	_	_	-	58.7	61.3	62.4	62.8	49.6
	\checkmark	\checkmark	\checkmark	\checkmark		85.2	89.1	89.5	89.7	59.5	62.2	63.1	63.3	49.6
	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	83.8	88.6	89.0	89.2	57.6	61.0	61.7	62.1	21.5

Table 2. Component-wise ablation of LiM3D (mIoU as %, and #parameters in millions, M) where UP, RF, RT, ST, SD denote Unreliable Pseudo-labeling, Reflectivity, Reflec-TTA, ST-RFD, and SDSC.

Table 5. Effects of differing reliability using pseudo voxels on SemanticKITTI validation set, measured by the entropy.

		Semantic	KITTI [7]		ScribbleK	KITTI [46	
	5%	10%	20%	40%	5%	10%	20%	40%
Intensity	56.2	59.1	59.8	60.9	55.7	57.5	57.9	59.2
Reflectivity	59.5	62.2	63.1	63.3	58.1	61.0	61.2	62.0

Table 6. Reflectivity (Reflec-TTA) vs. Intensity (intensity-based TTA) on SemanticKITTI and ScribbleKITTI *validation* set (mIoU, %).