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• LiM A novel methodology for semi-
supervised 3D LiDAR semantic segmentation 
that uses significantly Less parameters and 
offers (More) superior accuracy.

• SDSC A novel Sparse Depthwise Separable 
Convolution (SDSC) module, to reduce 
trainable network parameters, and to both 
reduce the likelihood of over-fitting and 
facilitate a deeper network architecture.

• ST-RFD A novel Spatio-Temporal Redundant 
Frame Down-sampling (ST-RFD) strategy, to 
extract a maximally diverse data subset for 
training by removing temporal redundancy 
and hence future training requirements.

• Reflec-TTA UPL A novel soft pseudo-
labeling method informed by LiDAR 
reflectivity as a proxy to in-scene object 
material properties, facilitating effective use of 
limited data annotation.
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by +0.7% on average in validation set. Appending reflectiv-
ity features (RF) in the training stage, we further improve the
mIoU on the training set by +0.7% on average. Due to the
improvements in training, the model generates a higher qual-
ity of pseudo-labels, which results to a +0.5% increase in
mIoU in the validation set. If we disable reflectivity features
in the training stage, applying Reflec-TTA in the distilla-
tion stage alone, we then get an average improvement of
+1.3% compared with pseudo-labeling only. On the whole,
enabling all reflectivity-based components (RF+RT) shows
great improvements of up to +2.8% in validation mIoU.

Table 3. The computation cost and mIoU (in percentage) under
5%-labeled training results on SemanticKITTI (SeK) and Scrib-
bleKITTI (ScK) validation set.

Method # Parameters # Mult-Adds SeK [7] ScK [46]

Cylider3D [63] 56.3 476.9M 45.4 39.2
Unal et al. [46] 49.6 420.2M 49.9 46.9
2DPASS [58] 26.5 217.4M 51.7 45.1
MinkowskiNet [13] 21.7 114.0G 42.4 35.8
SPVNAS [44] 12.5 73.8G 45.1 38.9
LiM3D+SDSC (ours) 21.5 182.0M 57.6 54.7
LiM3D (ours) 49.6 420.2M 59.5 58.1

Table 4. Effects of ST-RFD sampling on SemanticKITTI and
ScribbleKITTI validation set (mIoU as %).

Sampling SemanticKITTI [7] ScribbleKITTI [46]
5% 10% 20% 40% 5% 10% 20% 40%

Random 58.5 61.6 62.6 62.7 57.1 60.3 60.5 60.9
Uniform 58.7 61.3 62.4 62.8 56.9 60.6 60.3 61.0

ST-RFD-R 59.1 62.4 62.9 63.4 58.0 60.7 61.2 61.8
ST-RFD 59.5 62.2 63.1 63.3 58.1 61.0 61.2 62.0

Table 5. Effects of differing reliability using pseudo voxels on Se-
manticKITTI validation set, measured by the entropy of voxel-wise
prediction. Unreliable and Reliable: selecting negative candidates
with top 20% highest entropy scores and bottom 20% counterpart
respectively. Random: sampling randomly regardless of entropy.

Ratio Unreliable Reliable Random
mIoU SS/FF mIoU SS/FF mIoU SS/FF

5% 59.5 85.6 57.2 82.3 56.4 81.2
10% 62.2 89.5 60.8 87.5 59.7 85.9
20% 63.1 90.8 61.4 88.3 60.5 87.1
40% 63.3 91.1 62.8 90.4 61.3 88.2

Table 6. Reflectivity (Reflec-TTA) vs. Intensity (intensity-based
TTA) on SemanticKITTI and ScribbleKITTI validation set (mIoU, %).

TTA SemanticKITTI [7] ScribbleKITTI [46]
5% 10% 20% 40% 5% 10% 20% 40%

Intensity 56.2 59.1 59.8 60.9 55.7 57.5 57.9 59.2
Reflectivity 59.5 62.2 63.1 63.3 58.1 61.0 61.2 62.0

Substituting the uniform sampling with our ST-RFD strat-
egy, we observe further average improvements of +1.0% and
+0.8% on training and validation respectively (Tab. 2).

Our SDSC module reduces the trainable parameters of
our model by 57%, with a performance cost of �0.7%
and �1.4% mIoU on training and validation respectively

(Tab. 2). Finally, we provide two models, one without SDSC
(LiM3D) and one with (LiM3D+SDSC), corresponding to
the bottom two rows of Tab. 2.
Effectiveness of SDSC module. In Tab. 3, we com-
pare our LiM3D and LiM3D+SDSC with recent state-of-
the-art methods under 5%-labeled semi-supervised train-
ing on the SemanticKITTI and ScribbleKITTI validation

sets. LiM3D+SDSC outperforms the voxel-based meth-
ods [46, 63] with at least a 2.3⇥ reduction in model
size. Similarly, with comparable model size [13, 44, 58],
LiM3D+SDSC has higher mIoU in both datasets and up to
641⇥ fewer multiply-add operations.
Effectiveness of ST-RFD strategy. In Tab. 4, we illus-
trate the effectiveness of our ST-RFD strategy by comparing
LiM3D with two widely-used strategies in semi-supervised
training, i.e., random sampling and uniform sampling on
SemanticKITTI [7] and ScribbleKITTI [46] validation set.
Whilst uniform and random sampling have comparable
results on both validation sets, simply applying our ST-
RFD strategy improves the baseline by +0.90%, +0.75%,
+0.60% and +0.55% on SemanticKITTI under 5%, 10%,
20% and 40% sampling protocol respectively. Furthermore,
using corresponding range images of point cloud, rather than
RGB images to compute the spatio-temporal redundancy
within ST-RFD (see ST-RFD-R in Tab. 4), has no significant
difference on the performance.
Effectiveness of Unreliable Pseudo-Labeling. In Tab. 5,
we evaluate selecting negative candidates with different re-
liability to illustrate the improvements of using unreliable
pseudo-labels in semi-supervised semantic segmentation.
The “Unreliable” selecting of negative candidates outper-
forms other alternative methodologies, showing the positive
performance impact of unreliable pseudo-labels.
Effectiveness of Reflec-TTA. In Tab. 2, we compare LiM3D
performance with and without Reflec-TTA and further exper-
iment on the SemanticKITTI and ScribbleKITTI validation

set in Tab. 6. This demonstrates that the LiDAR point-wise
intensity feature I

~, in place of the distance-normalized
reflectivity feature R

~, offers inferior on-task performance.

5. Conclusion
This paper presents an efficient semi-supervised architecture
for 3D point cloud semantic segmentation, which achieves
more in terms of performance with less computational costs,
less annotations, and less trainable model parameters (i.e.,
Less is More, LiM3D). Our architecture consists of three
novel contributions: the SDSC convolution module, the ST-
RFD sampling strategy, and the pseudo-labeling method in-
formed by LiDAR reflectivity. These individual components
can be applied to any 3D semantic segmentation architec-
ture to reduce the gap between semi or weakly-supervised
and fully-supervised learning on task performance, whilst
managing model complexity and computation costs.

Table 1. Comparative mIoU for Range- and Voxel-based methods using Uniform sampling (U) and ST-RFD sampling (S): bold/underlined
= best/2nd best; ⇤ denotes locally reproduced result; – denotes missing result due to the unavailability from original authors.

Repr. Samp. Method SemanticKITTI [7] ScribbleKITTI [46]
1% 5% 10% 20% 40% 50% 100% 1% 5% 10% 20% 40% 50% 100%

Range U LaserMix [32] (2022) 43.4 – 58.8 59.4 – 61.4 – 38.3 – 54.4 55.6 – 58.7 –

Voxel

U Cylinder3D [63] (CVPR’21) – 45.4 56.1 57.8 58.7 – 67.8 – 39.2 48.0 52.1 53.8 – 56.3
U LaserMix [32] (2022) 50.6 – 60.0 61.9 – 62.3 – 44.2 – 53.7 55.1 – 56.8 –
U Jiang et al. [29] (ICCV’21) – 41.8 49.9 58.8 59.9 – 65.8 – – – – – – –
U Unal et al. [46] (CVPR’22) – 49.9⇤ 58.7⇤ 59.1⇤ 60.9 – 68.2⇤ – 46.9⇤ 54.2⇤ 56.5⇤ 58.6⇤ – 61.3
S LiM3D+SDSC (ours) 57.2 57.6 61.0 61.7 62.1 62.7 67.5 55.8 56.1 56.9 57.2 58.9 59.3 60.7
S LiM3D (ours) 58.4 59.5 62.2 63.1 63.3 63.6 69.5 57.0 58.1 61.0 61.2 62.0 62.1 62.4

For semi-supervised training, we report over both the bench-
marks using the SemanticKITTI and ScribbleKITTI valida-

tion set under 5%, 10%, 20%, and 40% partitioning. We
further report the relative performance of semi-supervised or
scribble-supervised for ScribbleKITTI (SS) training to the
fully supervised upper-bound (FS) in percentages (SS/FS) to
further analyze semi-supervised performance and report the
results for the fully-supervised training on both validation

sets for reference. The trainable parameter count and number
of multiply-adds (multi-adds) are additionally provided as a
metric of computational cost.
Implementation Details: Training is performed using 4⇥
NVIDIA A100 80GB GPU without pre-trained weights with
a DDP shared training strategy [1] to maintain GPU scaling
efficiency, whilst reducing memory overhead significantly.
Specific hyper-parameters are set as follows - Mean Teacher:
 = 0.99; unreliable pseudo-labeling: �C = 0.3, ⌧ = 0.5;
ST-RFD: � = {7.45, 5.72, 4.00, 2.28, 0} for sampling {5%,
10%, 20%, 40%, 100%} labeled training frames, assuming
the remainder as unlabeled; Reflec-TTA: Nb = 10, s = 3
various Reflec-TTA bin sizes, following [46], we set each
bin bi = (⇢,�) 2 {(20, 40), (40, 80), (80, 120)}.

Figure 8. Comparing the 10% sampling split of SemanticKITTI
(SeK, first row) and ScribbleKITTI (ScK, second row) validation

set with ground-truth (left), our approach (middle) and Unal et

al. [46] (right) with areas of improvement highlighted.

4.2. Experimental Results
In Tab. 1, we present the performance of our Less is More 3D
(LiM3D) point cloud semantic segmentation approach both
with (LiM3D+SDSC) and without (LiM3D) SDSC in a side-

Table 2. Component-wise ablation of LiM3D (mIoU as %, and
#parameters in millions, M) on SemanticKITTI [7] training and
validation sets where UP, RF, RT, ST, SD denote Unreliable Pseudo-
labeling, Reflectivity Feature, Reflec-TTA, ST-RFD, and SDSC
module respectively.

UP RF RT ST SD Training mIoU (%) Validation mIoU (%) #Params
5% 10% 20% 40% 5% 10% 20% 40% (M)

82.8 87.5 87.8 88.2 54.8 58.1 59.3 60.8 49.6
X – – – – 55.9 58.8 59.9 61.2 49.6

X X 83.6 88.3 88.7 89.1 56.8 59.6 60.5 61.4 49.6
X X – – – – 57.5 59.8 61.2 62.6 49.6
X X X – – – – 58.7 61.3 62.4 62.8 49.6

X X X X 85.2 89.1 89.5 89.7 59.5 62.2 63.1 63.3 49.6
X X X X X 83.8 88.6 89.0 89.2 57.6 61.0 61.7 62.1 21.5

by-side comparison with leading contemporary state-of-the-
art approaches on the SemanticKITTI and ScribbleKITTI
benchmark validation sets to illustrate our approach offers su-
perior or comparable (within 1% mIoU) performance across
all sampling ratios. Furthermore, we present supporting
qualitative results in Fig. 8.

On SemanticKITTI, with a lack of available super-
vision, LiM3D shows a relative performance (SS/FS)
from 85.6% (5%-fully-supervised) to 91.1% (40%-fully-
supervised), and LiM3D+SDSC from 85.3% to 92.0%,
compared to their respective fully supervised upper-bound.
LiM3D/LiM3D+SDSC performance is also less sensitive to
reduced labeled data sampling compared with other methods.

Our model significantly outperforms on small ratio sam-
pling splits, e.g., 5% and 10%. LiM3D shows up to 19.8%
and 18.9% mIoU improvements whilst, with a smaller model
size LiM3D+SDSC again shows significant mIoU improve-
ments by up to 16.4% and 15.5% when compared with other
range and voxel-based methods respectively.

4.3. Ablation Studies
Effectiveness of Components. In Tab. 2 we ablate each com-
ponent of LiM3D step by step and report the performance
on the SemanticKITTI training set at the end of training as
an overall indicator of pseudo-labeling quality in addition to
the corresponding validation set.

As shown in Tab. 2, adding unreliable pseudo-labeling
(UP) in the distillation stage, we can increase the valid mIoU

Evaluation & Results
by +0.7% on average in validation set. Appending reflectiv-
ity features (RF) in the training stage, we further improve the
mIoU on the training set by +0.7% on average. Due to the
improvements in training, the model generates a higher qual-
ity of pseudo-labels, which results to a +0.5% increase in
mIoU in the validation set. If we disable reflectivity features
in the training stage, applying Reflec-TTA in the distilla-
tion stage alone, we then get an average improvement of
+1.3% compared with pseudo-labeling only. On the whole,
enabling all reflectivity-based components (RF+RT) shows
great improvements of up to +2.8% in validation mIoU.

Table 3. The computation cost and mIoU (in percentage) under
5%-labeled training results on SemanticKITTI (SeK) and Scrib-
bleKITTI (ScK) validation set.

Method # Parameters # Mult-Adds SeK [7] ScK [46]

Cylider3D [63] 56.3 476.9M 45.4 39.2
Unal et al. [46] 49.6 420.2M 49.9 46.9
2DPASS [58] 26.5 217.4M 51.7 45.1
MinkowskiNet [13] 21.7 114.0G 42.4 35.8
SPVNAS [44] 12.5 73.8G 45.1 38.9
LiM3D+SDSC (ours) 21.5 182.0M 57.6 54.7
LiM3D (ours) 49.6 420.2M 59.5 58.1

Table 4. Effects of ST-RFD sampling on SemanticKITTI and
ScribbleKITTI validation set (mIoU as %).

Sampling SemanticKITTI [7] ScribbleKITTI [46]
5% 10% 20% 40% 5% 10% 20% 40%

Random 58.5 61.6 62.6 62.7 57.1 60.3 60.5 60.9
Uniform 58.7 61.3 62.4 62.8 56.9 60.6 60.3 61.0

ST-RFD-R 59.1 62.4 62.9 63.4 58.0 60.7 61.2 61.8
ST-RFD 59.5 62.2 63.1 63.3 58.1 61.0 61.2 62.0

Table 5. Effects of differing reliability using pseudo voxels on Se-
manticKITTI validation set, measured by the entropy of voxel-wise
prediction. Unreliable and Reliable: selecting negative candidates
with top 20% highest entropy scores and bottom 20% counterpart
respectively. Random: sampling randomly regardless of entropy.

Ratio Unreliable Reliable Random
mIoU SS/FF mIoU SS/FF mIoU SS/FF

5% 59.5 85.6 57.2 82.3 56.4 81.2
10% 62.2 89.5 60.8 87.5 59.7 85.9
20% 63.1 90.8 61.4 88.3 60.5 87.1
40% 63.3 91.1 62.8 90.4 61.3 88.2

Table 6. Reflectivity (Reflec-TTA) vs. Intensity (intensity-based
TTA) on SemanticKITTI and ScribbleKITTI validation set (mIoU, %).

TTA SemanticKITTI [7] ScribbleKITTI [46]
5% 10% 20% 40% 5% 10% 20% 40%

Intensity 56.2 59.1 59.8 60.9 55.7 57.5 57.9 59.2
Reflectivity 59.5 62.2 63.1 63.3 58.1 61.0 61.2 62.0

Substituting the uniform sampling with our ST-RFD strat-
egy, we observe further average improvements of +1.0% and
+0.8% on training and validation respectively (Tab. 2).

Our SDSC module reduces the trainable parameters of
our model by 57%, with a performance cost of �0.7%
and �1.4% mIoU on training and validation respectively

(Tab. 2). Finally, we provide two models, one without SDSC
(LiM3D) and one with (LiM3D+SDSC), corresponding to
the bottom two rows of Tab. 2.
Effectiveness of SDSC module. In Tab. 3, we com-
pare our LiM3D and LiM3D+SDSC with recent state-of-
the-art methods under 5%-labeled semi-supervised train-
ing on the SemanticKITTI and ScribbleKITTI validation

sets. LiM3D+SDSC outperforms the voxel-based meth-
ods [46, 63] with at least a 2.3⇥ reduction in model
size. Similarly, with comparable model size [13, 44, 58],
LiM3D+SDSC has higher mIoU in both datasets and up to
641⇥ fewer multiply-add operations.
Effectiveness of ST-RFD strategy. In Tab. 4, we illus-
trate the effectiveness of our ST-RFD strategy by comparing
LiM3D with two widely-used strategies in semi-supervised
training, i.e., random sampling and uniform sampling on
SemanticKITTI [7] and ScribbleKITTI [46] validation set.
Whilst uniform and random sampling have comparable
results on both validation sets, simply applying our ST-
RFD strategy improves the baseline by +0.90%, +0.75%,
+0.60% and +0.55% on SemanticKITTI under 5%, 10%,
20% and 40% sampling protocol respectively. Furthermore,
using corresponding range images of point cloud, rather than
RGB images to compute the spatio-temporal redundancy
within ST-RFD (see ST-RFD-R in Tab. 4), has no significant
difference on the performance.
Effectiveness of Unreliable Pseudo-Labeling. In Tab. 5,
we evaluate selecting negative candidates with different re-
liability to illustrate the improvements of using unreliable
pseudo-labels in semi-supervised semantic segmentation.
The “Unreliable” selecting of negative candidates outper-
forms other alternative methodologies, showing the positive
performance impact of unreliable pseudo-labels.
Effectiveness of Reflec-TTA. In Tab. 2, we compare LiM3D
performance with and without Reflec-TTA and further exper-
iment on the SemanticKITTI and ScribbleKITTI validation

set in Tab. 6. This demonstrates that the LiDAR point-wise
intensity feature I

~, in place of the distance-normalized
reflectivity feature R

~, offers inferior on-task performance.

5. Conclusion
This paper presents an efficient semi-supervised architecture
for 3D point cloud semantic segmentation, which achieves
more in terms of performance with less computational costs,
less annotations, and less trainable model parameters (i.e.,
Less is More, LiM3D). Our architecture consists of three
novel contributions: the SDSC convolution module, the ST-
RFD sampling strategy, and the pseudo-labeling method in-
formed by LiDAR reflectivity. These individual components
can be applied to any 3D semantic segmentation architec-
ture to reduce the gap between semi or weakly-supervised
and fully-supervised learning on task performance, whilst
managing model complexity and computation costs.

by +0.7% on average in validation set. Appending reflectiv-
ity features (RF) in the training stage, we further improve the
mIoU on the training set by +0.7% on average. Due to the
improvements in training, the model generates a higher qual-
ity of pseudo-labels, which results to a +0.5% increase in
mIoU in the validation set. If we disable reflectivity features
in the training stage, applying Reflec-TTA in the distilla-
tion stage alone, we then get an average improvement of
+1.3% compared with pseudo-labeling only. On the whole,
enabling all reflectivity-based components (RF+RT) shows
great improvements of up to +2.8% in validation mIoU.

Table 3. The computation cost and mIoU (in percentage) under
5%-labeled training results on SemanticKITTI (SeK) and Scrib-
bleKITTI (ScK) validation set.
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Unal et al. [46] 49.6 420.2M 49.9 46.9
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+1.3% compared with pseudo-labeling only. On the whole,
enabling all reflectivity-based components (RF+RT) shows
great improvements of up to +2.8% in validation mIoU.

Table 3. The computation cost and mIoU (in percentage) under
5%-labeled training results on SemanticKITTI (SeK) and Scrib-
bleKITTI (ScK) validation set.

Method # Parameters # Mult-Adds SeK [7] ScK [46]

Cylider3D [63] 56.3 476.9M 45.4 39.2
Unal et al. [46] 49.6 420.2M 49.9 46.9
2DPASS [58] 26.5 217.4M 51.7 45.1
MinkowskiNet [13] 21.7 114.0G 42.4 35.8
SPVNAS [44] 12.5 73.8G 45.1 38.9
LiM3D+SDSC (ours) 21.5 182.0M 57.6 54.7
LiM3D (ours) 49.6 420.2M 59.5 58.1

Table 4. Effects of ST-RFD sampling on SemanticKITTI and
ScribbleKITTI validation set (mIoU as %).

Sampling SemanticKITTI [7] ScribbleKITTI [46]
5% 10% 20% 40% 5% 10% 20% 40%

Random 58.5 61.6 62.6 62.7 57.1 60.3 60.5 60.9
Uniform 58.7 61.3 62.4 62.8 56.9 60.6 60.3 61.0

ST-RFD-R 59.1 62.4 62.9 63.4 58.0 60.7 61.2 61.8
ST-RFD 59.5 62.2 63.1 63.3 58.1 61.0 61.2 62.0

Table 5. Effects of differing reliability using pseudo voxels on Se-
manticKITTI validation set, measured by the entropy of voxel-wise
prediction. Unreliable and Reliable: selecting negative candidates
with top 20% highest entropy scores and bottom 20% counterpart
respectively. Random: sampling randomly regardless of entropy.

Ratio Unreliable Reliable Random
mIoU SS/FF mIoU SS/FF mIoU SS/FF

5% 59.5 85.6 57.2 82.3 56.4 81.2
10% 62.2 89.5 60.8 87.5 59.7 85.9
20% 63.1 90.8 61.4 88.3 60.5 87.1
40% 63.3 91.1 62.8 90.4 61.3 88.2

Table 6. Reflectivity (Reflec-TTA) vs. Intensity (intensity-based
TTA) on SemanticKITTI and ScribbleKITTI validation set (mIoU, %).

TTA SemanticKITTI [7] ScribbleKITTI [46]
5% 10% 20% 40% 5% 10% 20% 40%

Intensity 56.2 59.1 59.8 60.9 55.7 57.5 57.9 59.2
Reflectivity 59.5 62.2 63.1 63.3 58.1 61.0 61.2 62.0

Substituting the uniform sampling with our ST-RFD strat-
egy, we observe further average improvements of +1.0% and
+0.8% on training and validation respectively (Tab. 2).

Our SDSC module reduces the trainable parameters of
our model by 57%, with a performance cost of �0.7%
and �1.4% mIoU on training and validation respectively

(Tab. 2). Finally, we provide two models, one without SDSC
(LiM3D) and one with (LiM3D+SDSC), corresponding to
the bottom two rows of Tab. 2.
Effectiveness of SDSC module. In Tab. 3, we com-
pare our LiM3D and LiM3D+SDSC with recent state-of-
the-art methods under 5%-labeled semi-supervised train-
ing on the SemanticKITTI and ScribbleKITTI validation

sets. LiM3D+SDSC outperforms the voxel-based meth-
ods [46, 63] with at least a 2.3⇥ reduction in model
size. Similarly, with comparable model size [13, 44, 58],
LiM3D+SDSC has higher mIoU in both datasets and up to
641⇥ fewer multiply-add operations.
Effectiveness of ST-RFD strategy. In Tab. 4, we illus-
trate the effectiveness of our ST-RFD strategy by comparing
LiM3D with two widely-used strategies in semi-supervised
training, i.e., random sampling and uniform sampling on
SemanticKITTI [7] and ScribbleKITTI [46] validation set.
Whilst uniform and random sampling have comparable
results on both validation sets, simply applying our ST-
RFD strategy improves the baseline by +0.90%, +0.75%,
+0.60% and +0.55% on SemanticKITTI under 5%, 10%,
20% and 40% sampling protocol respectively. Furthermore,
using corresponding range images of point cloud, rather than
RGB images to compute the spatio-temporal redundancy
within ST-RFD (see ST-RFD-R in Tab. 4), has no significant
difference on the performance.
Effectiveness of Unreliable Pseudo-Labeling. In Tab. 5,
we evaluate selecting negative candidates with different re-
liability to illustrate the improvements of using unreliable
pseudo-labels in semi-supervised semantic segmentation.
The “Unreliable” selecting of negative candidates outper-
forms other alternative methodologies, showing the positive
performance impact of unreliable pseudo-labels.
Effectiveness of Reflec-TTA. In Tab. 2, we compare LiM3D
performance with and without Reflec-TTA and further exper-
iment on the SemanticKITTI and ScribbleKITTI validation

set in Tab. 6. This demonstrates that the LiDAR point-wise
intensity feature I

~, in place of the distance-normalized
reflectivity feature R

~, offers inferior on-task performance.

5. Conclusion
This paper presents an efficient semi-supervised architecture
for 3D point cloud semantic segmentation, which achieves
more in terms of performance with less computational costs,
less annotations, and less trainable model parameters (i.e.,
Less is More, LiM3D). Our architecture consists of three
novel contributions: the SDSC convolution module, the ST-
RFD sampling strategy, and the pseudo-labeling method in-
formed by LiDAR reflectivity. These individual components
can be applied to any 3D semantic segmentation architec-
ture to reduce the gap between semi or weakly-supervised
and fully-supervised learning on task performance, whilst
managing model complexity and computation costs.

Figure 1. mIoU (%) against parameters and
Mult-Adds @5% sampling protocol.

LiM Figure 2. Our proposed architecture for unreliable pseudo-labels LiDAR semantic segmentation
involves three stages: training, pseudo-labeling, and distillation with unreliable learning.

ST-RFD Figure 6. Overview of Spatio-Temporal Redundant Frame Downsampling (ST-RFD) approach.

ST-RFD Figure 5. Illustration of LiDAR frame temporal
correlation as [# frame ID] redundancy with 5%
sampling on SemanticKITTI [7] using uniform sampling
(selected frames in 🔵) and ST-RFD strategy (🔴).

Reflec-TTA Figure 4. Coarse histograms of
Reflec-TTA bins.

SDSC Figure 7. Illustration of the Sparse Depthwise
Separable Convolution (SDSC) module.
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UPL Figure 3. Illustration on
Unreliable Pseudo-Labels (UPL). Left:
entropy predicted from an unlabeled
point cloud – greener: lower entropy.
Right: Category-wise probability of an
unreliable prediction X.

Table 3. The computation cost and mIoU (%)
under 5%-labeled training results on
SemanticKITTI (SeK) and ScribbleKITTI (ScK).

Figure 8. Comparing the 10% sampling split
with ground-truth (left), our approach (middle)
and Unal et al. [46] (right).

Table 2. Component-wise ablation of LiM3D (mIoU
as %, and #parameters in millions, M) where UP,
RF, RT, ST, SD denote Unreliable Pseudo-labeling,
Reflectivity, Reflec-TTA, ST-RFD, and SDSC.

Table 1. Comparative mIoU for Range- and Voxel-based methods using Uniform sampling (U),
sequential partition (P) and ST-RFD sampling (S): bold/underlined = best/2nd best.

Table 4. Effects of ST-RFD sampling (mIoU as %). Table 5. Effects of differing reliability using
pseudo voxels on SemanticKITTI validation
set, measured by the entropy.Ground-Truth Our Approach Unal et al.

Figure A4. Magnification of regional details.

Table 6. Reflectivity (Reflec-TTA) vs. Intensity
(intensity-based TTA) on SemanticKITTI and
ScribbleKITTI validation set (mIoU, %).

Table 1. Comparative mIoU for Range- and Voxel-based methods using uniform sampling (U), sequential partition (P) and ST-RFD sampling
(S): bold/underlined = best/2nd best; ⇤ denotes reproduced result; – denotes missing result due to unavailability from original authors.

Repr. Samp. Method SemanticKITTI [7] ScribbleKITTI [46]
1% 5% 10% 20% 40% 50% 100% 1% 5% 10% 20% 40% 50% 100%

Range U LaserMix [32] (2022) 43.4 – 58.8 59.4 – 61.4 – 38.3 – 54.4 55.6 – 58.7 –

Voxel

U Cylinder3D [63] (CVPR’21) – 45.4 56.1 57.8 58.7 – 67.8 – 39.2 48.0 52.1 53.8 – 56.3
U LaserMix [32] (2022) 50.6 – 60.0 61.9 – 62.3 – 44.2 – 53.7 55.1 – 56.8 –
P Jiang et al. [29] (ICCV’21) – 41.8 49.9 58.8 59.9 – 65.8 – – – – – – –
U Unal et al. [46] (CVPR’22) – 49.9⇤ 58.7⇤ 59.1⇤ 60.9 – 68.2⇤ – 46.9⇤ 54.2⇤ 56.5⇤ 58.6⇤ – 61.3
S LiM3D+SDSC (ours) 57.2 57.6 61.0 61.7 62.1 62.7 67.5 55.8 56.1 56.9 57.2 58.9 59.3 60.7
S LiM3D (ours) 58.4 59.5 62.2 63.1 63.3 63.6 69.5 57.0 58.1 61.0 61.2 62.0 62.1 62.4

For semi-supervised training, we report over both the bench-
marks using the SemanticKITTI and ScribbleKITTI valida-

tion set under 5%, 10%, 20%, and 40% partitioning. We
further report the relative performance of semi-supervised or
scribble-supervised for ScribbleKITTI (SS) training to the
fully supervised upper-bound (FS) in percentages (SS/FS) to
further analyze semi-supervised performance and report the
results for the fully-supervised training on both validation

sets for reference. The trainable parameter count and number
of multiply-adds (multi-adds) are additionally provided as a
metric of computational cost.
Implementation Details: Training is performed using 4⇥
NVIDIA A100 80GB GPU without pre-trained weights with
a DDP shared training strategy [1] to maintain GPU scaling
efficiency, whilst reducing memory overhead significantly.
Specific hyper-parameters are set as follows - Mean Teacher:
 = 0.99; unreliable pseudo-labeling: �C = 0.3, ⌧ = 0.5;
ST-RFD: � = {7.45, 5.72, 4.00, 2.28, 0} for sampling {5%,
10%, 20%, 40%, 100%} labeled training frames, assuming
the remainder as unlabeled; Reflec-TTA: Nb = 10, s = 3
various Reflec-TTA bin sizes, following [46], we set each
bin bi = (⇢,�) 2 {(20, 40), (40, 80), (80, 120)}.

Se
K

Sc
K

Ground-Truth Our Approach Unal et al.

Figure 8. Comparing the 10% sampling split of SemanticKITTI
(SeK, first row) and ScribbleKITTI (ScK, second row) validation

set with ground-truth (left), our approach (middle) and Unal et

al. [46] (right) with areas of improvement highlighted.

4.2. Experimental Results
In Tab. 1, we present the performance of our Less is More 3D
(LiM3D) point cloud semantic segmentation approach both
with (LiM3D+SDSC) and without (LiM3D) SDSC in a side-

Table 2. Component-wise ablation of LiM3D (mIoU as %, and
#parameters in millions, M) on SemanticKITTI [7] training and
validation sets where UP, RF, RT, ST, SD denote Unreliable Pseudo-
labeling, Reflectivity Feature, Reflec-TTA, ST-RFD, and SDSC
module respectively.

UP RF RT ST SD Training mIoU (%) Validation mIoU (%) #Params
5% 10% 20% 40% 5% 10% 20% 40% (M)

82.8 87.5 87.8 88.2 54.8 58.1 59.3 60.8 49.6
X – – – – 55.9 58.8 59.9 61.2 49.6

X X 83.6 88.3 88.7 89.1 56.8 59.6 60.5 61.4 49.6
X X – – – – 57.5 59.8 61.2 62.6 49.6
X X X – – – – 58.7 61.3 62.4 62.8 49.6

X X X X 85.2 89.1 89.5 89.7 59.5 62.2 63.1 63.3 49.6
X X X X X 83.8 88.6 89.0 89.2 57.6 61.0 61.7 62.1 21.5

by-side comparison with leading contemporary state-of-the-
art approaches on the SemanticKITTI and ScribbleKITTI
benchmark validation sets to illustrate our approach offers su-
perior or comparable (within 1% mIoU) performance across
all sampling ratios. Furthermore, we present supporting
qualitative results in Fig. 8.

On SemanticKITTI, with a lack of available super-
vision, LiM3D shows a relative performance (SS/FS)
from 85.6% (5%-fully-supervised) to 91.1% (40%-fully-
supervised), and LiM3D+SDSC from 85.3% to 92.0%,
compared to their respective fully supervised upper-bound.
LiM3D/LiM3D+SDSC performance is also less sensitive to
reduced labeled data sampling compared with other methods.

Our model significantly outperforms on small ratio sam-
pling splits, e.g., 5% and 10%. LiM3D shows up to 19.8%
and 18.9% mIoU improvements whilst, with a smaller model
size LiM3D+SDSC again shows significant mIoU improve-
ments by up to 16.4% and 15.5% when compared with other
range and voxel-based methods respectively.

4.3. Ablation Studies
Effectiveness of Components. In Tab. 2 we ablate each
component of LiM3D step by step and report the perfor-
mance on the SemanticKITTI training set at the end of
training as an overall indicator of pseudo-labeling quality in
addition to the corresponding validation set.

As shown in Tab. 2, adding unreliable pseudo-labeling
(UP) in the distillation stage, we can increase the valid mIoU


